Week 1. Proposed by Matthew McMullen.

Show that $\sqrt{2009} + \sqrt{2010}$ is a root of a fourth degree polynomial with integer coefficients. Is there a non-zero polynomial with integer coefficients and of degree less than four that $\sqrt{2009} + \sqrt{2010}$ is a root of?

Week 2. Proposed by Matthew McMullen.

(a) Let $m \geq n \geq 0$. Show that

$$\sum_{i=n}^{m} \binom{i}{n} = \binom{m+1}{n+1}.$$

(b) Find

$$\sum_{i=1}^{1729} \left(\frac{3739 - i}{2010} \right) \quad \text{and} \quad \sum_{i=1}^{1729} i \left(\frac{3739 - i}{2010} \right).$$

Week 3. Proposed by Matthew McMullen.

If N is a positive integer with at least two prime divisors, define the delta value of N to be $p - q$, where $q < p$ are the two largest prime divisors of N. Find the previous five years and the next five years with the same delta value as 2010.
Week 4. Proposed by Matthew McMullen.

Let \(F_1 = 1 = F_2 \) and \(F_n = F_{n-2} + F_{n-1} \) for \(n \geq 3 \). (So \(F_n \) is the \(n \)th Fibonacci number.) Find all \(n \) such that \(F_n = n^2 \).

Week 5. Proposed by Matthew McMullen.

(a) When I type \(i^i \) into my TI-83 calculator, it gives me 0.2078795764. When I type in \((-i)^i\), it gives me 4.810477381. What are the exact values of these numbers? More generally, how would you “make sense” of \(z^w \), where \(z \) and \(w \) are complex numbers (and \(z \neq 0 \))?

(b) Classify all complex numbers \(z \) and \(w \) with \(|z| = 1 \) and \(z^w \in \mathbb{R} \).

Week 6. Proposed by Matthew McMullen.

Suppose

\[
\int_0^a \frac{1}{\sqrt{1 + \sqrt{x}}} \, dx = 2010.
\]

Find, with minimal computational aid, the first two digits of \(a \).

Week 7. 2009 Ohio MAA Student Team Competition.

Let \(P \) be a point picked at random inside the equilateral triangle \(ABC \). What is the probability that the angle \(\angle APB \) is an acute angle?

Week 8. Proposed by Matthew McMullen.

Find

\[
\sum_{n=1}^{\infty} \frac{2n - 1}{(4n - 1)!}.
\]

Let T be the region bounded by an isosceles triangle. Mathematically describe all ways of dividing T into two equal-area pieces using a straight line.

Week 10. (a) Proposed by Ryan Berndt; (b) 1999 ECC Problem 5.

(a) Show that the formula
\[\int_{-1}^{1} p(x) \, dx = p(-\sqrt{3}/3) + p(\sqrt{3}/3) \]
yields exact results for polynomials of degree three or less.

(b) (i) Find the points x_1 and x_2 so that the formula
\[\int_{0}^{1} p(x) \, dx = p(x_1) + p'(x_2) \]
yields exact results for polynomials of degree two or less.

(ii) Determine the error in using the resulting formula for a third degree polynomial $p(x)$ with leading coefficient 1.